Integrating database homology in a probabilistic gene structure model.
نویسندگان
چکیده
We present an improved stochastic model of genes in DNA, and describe a method for integrating database homology into the probabilistic framework. A generalized hidden Markov model (GHMM) describes the grammar of a legal parse of a DNA sequence. Probabilities are estimated for gene features by using dynamic programming to combine information from multiple sensors. We show how matches to homologous sequences from a database can be integrated into the probability estimation by interpreting the likelihood of a sequence in terms of the bit-cost to encode a sequence given a homology match. We also demonstrate how homology matches in protein databases can be exploited to help identify splice sites. Our experiments show significant improvements in the sensitivity and specificity of gene structure identification when these new features are added to our gene-finding system, Genie. Experimental results in tests using a standard set of annotated genes showed that Genie identified 95% of coding nucleotides correctly with a specificity of 91%, and 77% of exons were identified exactly.
منابع مشابه
Comparison of the Lipophosphoglycan 3 Gene of the Lizard and Mammalian Leishmania: A Homology Modeling
Background: Lipophosphoglycan 3 (LPG3) is required for the LPG assembly, a well known virulent molecule. In this study, the LPG3 gene of the lizard and mammalian Leishmania species were cloned and sequenced. A three-dimensional structure (3D) for the target sequence was also predicted by comparative (homology) modeling. Materials and Methods: An optimization PCR amplification was performed o...
متن کاملA Trust Based Probabilistic Method for Efficient Correctness Verification in Database Outsourcing
Correctness verification of query results is a significant challenge in database outsourcing. Most of the proposed approaches impose high overhead, which makes them impractical in real scenarios. Probabilistic approaches are proposed in order to reduce the computation overhead pertaining to the verification process. In this paper, we use the notion of trust as the basis of our probabilistic app...
متن کاملUncertain Groupings: Probabilistic Combination of Grouping Data
Probabilistic approaches for data integration have much potential [7]. We view data integration as an iterative process where data understanding gradually increases as the data scientist continuously refines his view on how to deal with learned intricacies like data conflicts. This paper presents a probabilistic approach for integrating data on groupings. We focus on a bio-informatics use case ...
متن کاملA Probabilistic Model of Learning Fields in Islamic Economics and Finance
In this paper an epistemological model of learning fields of probabilistic events is formalized. It is used to explain resource allocation governed by pervasive complementarities as the sign of unity of knowledge. Such an episteme is induced epistemologically into interacting, integrating and evolutionary variables representing the problem at hand. The end result is the formalization of a p...
متن کاملThe SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
MOTIVATION Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 1997